Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prenat Diagn ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635411

RESUMO

OBJECTIVE: Here we trained an automatic phenotype assessment tool to recognize syndromic ears in two syndromes in fetuses-=CHARGE and Mandibulo-Facial Dysostosis Guion Almeida type (MFDGA)-versus controls. METHOD: We trained an automatic model on all profile pictures of children diagnosed with genetically confirmed MFDGA and CHARGE syndromes, and a cohort of control patients, collected from 1981 to 2023 in Necker Hospital (Paris) with a visible external ear. The model consisted in extracting landmarks from photographs of external ears, in applying geometric morphometry methods, and in a classification step using machine learning. The approach was then tested on photographs of two groups of fetuses: controls and fetuses with CHARGE and MFDGA syndromes. RESULTS: The training set contained a total of 1489 ear photographs from 526 children. The validation set contained a total of 51 ear photographs from 51 fetuses. The overall accuracy was 72.6% (58.3%-84.1%, p < 0.001), and 76.4%, 74.9%, and 86.2% respectively for CHARGE, control and MFDGA fetuses. The area under the curves were 86.8%, 87.5%, and 90.3% respectively for CHARGE, controls, and MFDGA fetuses. CONCLUSION: We report the first automatic fetal ear phenotyping model, with satisfactory classification performances. Further validations are required before using this approach as a diagnostic tool.

2.
Eur J Hum Genet ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351293

RESUMO

Severe ventriculomegaly is a rare congenital brain defect, usually detected in utero, of poor neurodevelopmental prognosis. This ventricular enlargement can be the consequence of different mechanisms: either by a disruption of the cerebrospinal fluid circulation or abnormalities of its production/absorption. The aqueduct stenosis is one of the most frequent causes of obstructive ventriculomegaly, however, fewer than 10 genes have been linked to this condition and molecular bases remain often unknown. We report here 4 fetuses from 2 unrelated families presenting with ventriculomegaly at prenatal ultra-sonography as well as an aqueduct stenosis and skeletal abnormalities as revealed by fetal autopsy. Genome sequencing identified biallelic pathogenic variations in LIG4, a DNA-repair gene responsible for the LIG4 syndrome which associates a wide range of clinical manifestations including developmental delay, microcephaly, short stature, radiation hypersensitivity and immunodeficiency. Thus, not only this report expands the phenotype spectrum of LIG4-related disorders, adding ventriculomegaly due to aqueduct stenosis, but we also provide the first neuropathological description of fetuses carrying LIG4 pathogenic biallelic variations.

3.
J Med Genet ; 61(3): 244-249, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-37857482

RESUMO

BACKGROUND: The neurodevelopmental prognosis of anomalies of the corpus callosum (ACC), one of the most frequent brain malformations, varies extremely, ranging from normal development to profound intellectual disability (ID). Numerous genes are known to cause syndromic ACC with ID, whereas the genetics of ACC without ID remains poorly deciphered. METHODS: Through a collaborative work, we describe here ZEB1, a gene previously involved in an ophthalmological condition called type 3 posterior polymorphous corneal dystrophy, as a new dominant gene of ACC. We report a series of nine individuals with ACC (including three fetuses terminated due to ACC) carrying a ZEB1 heterozygous loss-of-function (LoF) variant, identified by exome sequencing. RESULTS: In five cases, the variant was inherited from a parent with a normal corpus callosum, which illustrates the incomplete penetrance of ACC in individuals with an LoF in ZEB1. All patients reported normal schooling and none of them had ID. Neuropsychological assessment in six patients showed either normal functioning or heterogeneous cognition. Moreover, two patients had a bicornuate uterus, three had a cardiovascular anomaly and four had macrocephaly at birth, which suggests a larger spectrum of malformations related to ZEB1. CONCLUSION: This study shows ZEB1 LoF variants cause dominantly inherited ACC without ID and extends the extraocular phenotype related to this gene.


Assuntos
Deficiência Intelectual , Malformações do Sistema Nervoso , Recém-Nascido , Feminino , Humanos , Corpo Caloso , Agenesia do Corpo Caloso/genética , Malformações do Sistema Nervoso/genética , Deficiência Intelectual/genética , Cognição , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
4.
Front Pediatr ; 11: 1171277, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37664547

RESUMO

Introduction: Mandibulo-Facial Dysostosis with Microcephaly (MFDM) is a rare disease with a broad spectrum of symptoms, characterized by zygomatic and mandibular hypoplasia, microcephaly, and ear abnormalities. Here, we aimed at describing the external ear phenotype of MFDM patients, and train an Artificial Intelligence (AI)-based model to differentiate MFDM ears from non-syndromic control ears (binary classification), and from ears of the main differential diagnoses of this condition (multi-class classification): Treacher Collins (TC), Nager (NAFD) and CHARGE syndromes. Methods: The training set contained 1,592 ear photographs, corresponding to 550 patients. We extracted 48 patients completely independent of the training set, with only one photograph per ear per patient. After a CNN-(Convolutional Neural Network) based ear detection, the images were automatically landmarked. Generalized Procrustes Analysis was then performed, along with a dimension reduction using PCA (Principal Component Analysis). The principal components were used as inputs in an eXtreme Gradient Boosting (XGBoost) model, optimized using a 5-fold cross-validation. Finally, the model was tested on an independent validation set. Results: We trained the model on 1,592 ear photographs, corresponding to 1,296 control ears, 105 MFDM, 33 NAFD, 70 TC and 88 CHARGE syndrome ears. The model detected MFDM with an accuracy of 0.969 [0.838-0.999] (p < 0.001) and an AUC (Area Under the Curve) of 0.975 within controls (binary classification). Balanced accuracies were 0.811 [0.648-0.920] (p = 0.002) in a first multiclass design (MFDM vs. controls and differential diagnoses) and 0.813 [0.544-0.960] (p = 0.003) in a second multiclass design (MFDM vs. differential diagnoses). Conclusion: This is the first AI-based syndrome detection model in dysmorphology based on the external ear, opening promising clinical applications both for local care and referral, and for expert centers.

5.
Mol Genet Genomic Med ; 11(9): e2219, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37353886

RESUMO

INTRODUCTION: CREBBP truncating mutations and deletions are responsible for the well-known Rubinstein-Taybi syndrome. Recently, a new, distinct CREBBP-linked syndrome has been described: missense mutations located at the 3' end of exon 30 and the 5' portion of exon 31 induce Menke-Hennekam syndrome. Patients with this syndrome present a recognizable facial dysmorphism, intellectual disability of variable severity, microcephaly, short stature, autism, epilepsy, visual and hearing impairments, feeding problems, upper airway infections, scoliosis, and/or kyphosis. To date, all diagnoses were made postnatally. METHOD AND CASE REPORT: Trio-whole exome sequencing (WES) was performed in a fetus showing increased nuchal translucency persistence and aorta abnormalities at 28 weeks of gestation (WG). RESULTS: WES revealed a CREBBP de novo missense mutation (c.5602C>T; p.Arg1868Trp) in exon 31, previously reported as the cause of Menke-Hennekam syndrome. Termination of pregnancy was performed at 32 WG. We further reviewed the prenatal signs of Menke-Hennekam syndrome already reported. Among the 35 patients reported and diagnosed postnatally up to this day, 15 presented recognizable prenatal signs, the most frequent being intra-uterine growth retardation, brain, and cardiovascular anomalies. CONCLUSION: Menke-Hennekam is a rare syndrome with unspecific, heterogeneous, and inconstant prenatal symptoms occurring most frequently with the c.5602C>T, p.(Arg1868Trp) mutation. Therefore, the prenatal diagnosis of Menke-Hennekam syndrome is only possible by molecular investigation. Moreover, this case report and review reinforce the importance of performing prenatal WES when unspecific signs are present on imaging.


Assuntos
Síndrome dos Cabelos Torcidos , Síndrome de Rubinstein-Taybi , Gravidez , Feminino , Humanos , Fenótipo , Sequenciamento do Exoma , Mutação , Síndrome de Rubinstein-Taybi/genética , Mutação de Sentido Incorreto
6.
Acta Neuropathol Commun ; 11(1): 29, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36803301

RESUMO

Congenital hydrocephalus is a common condition caused by the accumulation of cerebrospinal fluid in the ventricular system. Four major genes are currently known to be causally involved in hydrocephalus, either isolated or as a common clinical feature: L1CAM, AP1S2, MPDZ and CCDC88C. Here, we report 3 cases from 2 families with congenital hydrocephalus due to bi-allelic variations in CRB2, a gene previously reported to cause nephrotic syndrome, variably associated with hydrocephalus. While 2 cases presented with renal cysts, one case presented with isolated hydrocephalus. Neurohistopathological analysis allowed us to demonstrate that, contrary to what was previously proposed, the pathological mechanisms underlying hydrocephalus secondary to CRB2 variations are not due to stenosis but to atresia of both Sylvius Aqueduct and central medullar canal. While CRB2 has been largely shown crucial for apico-basal polarity, immunolabelling experiments in our fetal cases showed normal localization and level of PAR complex components (PKCι and PKCζ) as well as of tight (ZO-1) and adherens (ß-catenin and N-Cadherin) junction molecules indicating a priori normal apicobasal polarity and cell-cell adhesion of the ventricular epithelium suggesting another pathological mechanism. Interestingly, atresia but not stenosis of Sylvius aqueduct was also described in cases with variations in MPDZ and CCDC88C encoding proteins previously linked functionally to the Crumbs (CRB) polarity complex, and all 3 being more recently involved in apical constriction, a process crucial for the formation of the central medullar canal. Overall, our findings argue for a common mechanism of CRB2, MPDZ and CCDC88C variations that might lead to abnormal apical constriction of the ventricular cells of the neural tube that will form the ependymal cells lining the definitive central canal of the medulla. Our study thus highlights that hydrocephalus related to CRB2, MPDZ and CCDC88C constitutes a separate pathogenic group of congenital non-communicating hydrocephalus with atresia of both Sylvius aqueduct and central canal of the medulla.


Assuntos
Aqueduto do Mesencéfalo , Hidrocefalia , Humanos , Aqueduto do Mesencéfalo/patologia , Polaridade Celular/genética , Hidrocefalia/patologia , Proteínas , Proteínas de Transporte/genética , Proteínas de Membrana/genética , Proteínas dos Microfilamentos , Peptídeos e Proteínas de Sinalização Intracelular
7.
J Med Genet ; 60(4): 337-345, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927022

RESUMO

BACKGROUND: Ellis-Van Creveld (EVC) syndrome is one of the entities belonging to the skeletal ciliopathies short rib-polydactyly subgroup. Major signs are ectodermal dysplasia, chondrodysplasia, polydactyly and congenital cardiopathy, with a high degree of variability in phenotypes ranging from lethal to mild clinical presentations. The EVC and EVC2 genes are the major genes causative of EVC syndrome. However, an increased number of genes involved in the ciliopathy complex have been identified in EVC syndrome, leading to a better understanding of its physiopathology, namely, WDR35, GLI1, DYNC2LI1, PRKACA, PRKACB and SMO. They all code for proteins located in the primary cilia, playing a key role in signal transduction of the Hedgehog pathways. METHODS: The aim of this study was the analysis of 50 clinically identified EVC cases from 45 families to further define the phenotype and molecular bases of EVC. RESULTS: Our detection rate in the cohort of 45 families was of 91.11%, with variants identified in EVC/EVC2 (77.8%), DYNC2H1 (6.7%), DYNC2LI1 (2.2%), SMO (2.2%) or PRKACB (2.2%). No distinctive feature was remarkable of a specific genotype-phenotype correlation. Interestingly, we identified a high proportion of heterozygous deletions in EVC/EVC2 of variable sizes (26.92%), mostly inherited from the mother, and probably resulting from recombinations involving Alu sequences. CONCLUSION: We confirmed that EVC and EVC2 are the major genes involved in the EVC phenotype and highlighted the high prevalence of previously unreported CNVs (Copy Number Variation).


Assuntos
Síndrome de Ellis-Van Creveld , Polidactilia , Humanos , Proteínas Hedgehog/genética , Síndrome de Ellis-Van Creveld/genética , Síndrome de Ellis-Van Creveld/diagnóstico , Variações do Número de Cópias de DNA/genética , Fenótipo
8.
Brain ; 146(5): 1804-1811, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36349561

RESUMO

Corpus callosum defects are frequent congenital cerebral disorders caused by mutations in more than 300 genes. These include genes implicated in corpus callosum development or function, as well as genes essential for mitochondrial physiology. However, in utero corpus callosum anomalies rarely raise a suspicion of mitochondrial disease and are characterized by a very large clinical heterogeneity. Here, we report a detailed pathological and neuro-histopathological investigation of nine foetuses from four unrelated families with prenatal onset of corpus callosum anomalies, sometimes associated with other cerebral or extra-cerebral defects. Next generation sequencing allowed the identification of novel pathogenic variants in three different nuclear genes previously reported in mitochondrial diseases: TIMMDC1, encoding a Complex I assembly factor never involved before in corpus callosum defect; MRPS22, a protein of the small mitoribosomal subunit; and EARS2, the mitochondrial tRNA-glutamyl synthetase. The present report describes the antenatal histopathological findings in mitochondrial diseases and expands the genetic spectrum of antenatal corpus callosum anomalies establishing OXPHOS function as an important factor for corpus callosum biogenesis. We propose that, when observed, antenatal corpus callosum anomalies should raise suspicion of mitochondrial disease and prenatal genetic counselling should be considered.


Assuntos
Corpo Caloso , Doenças Mitocondriais , Humanos , Feminino , Gravidez , Corpo Caloso/patologia , Agenesia do Corpo Caloso/genética , Agenesia do Corpo Caloso/patologia , Doenças Mitocondriais/genética , Mitocôndrias/patologia , Mutação , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial
9.
Birth Defects Res ; 114(10): 499-504, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35426486

RESUMO

BACKGROUND: The THOC6 protein is a component of the THO complex. It is involved in mRNA transcription, processing and nuclear export. Interestingly molecular biallelic loss-of-function variants of the THOC6 gene were identified in the Beaulieu-Boycott-Innes syndrome (BBIS- OMIM # 613680). This condition was described in 17 patients and is characterized by a moderate to severe intellectual disability, facial dysmorphic features and severe birth defects such as heart, skeletal, ano-genital and renal congenital malformations. METHODS: In the present study, we report on a new family with two affected sibs. The 6-year-old female had severe intellectual disability with autistic features, feeding difficulties, growth delay, facial dysmorphic, and congenital malformations (hand, skeletal and cardiac anomalies). The male fetus presented antenatally with a cystic hygroma associated with severe aortic and left ventricular hypoplasia. Autopsy, after termination of pregnancy at 15 weeks of gestation, showed facial dysmorphic, short right thumb and hypospadias. RESULTS: Exome sequencing detected in both sibs compound heterozygous variants of the THOC6 gene (NM_024339.3, GRCh37): the already reported c.[298T>A;700G>T;824G>A] haplotype and a novel variant c.977T>G, p.(Val326Gly). DISCUSSION: We made a review of the literature of 17 BBIS reported patients including our two siblings. Severe to moderate ID and congenital malformations were constant. Prenatal and postnatal failure to thrive were frequent. Brain MRI were not specific. Prenatal findings were reported in 40% of cases but we described the first case of cystic hygroma. The present study reports extends the prenatal delineation of the phenotypic features observed in association with the presence of THOC6 variants. In addition, it underscores the intrafamilial phenotypic variability observed in BBIS.


Assuntos
Deficiência Intelectual , Linfangioma Cístico , Microcefalia , Anormalidades Musculoesqueléticas , Proteínas de Ligação a RNA , Feminino , Humanos , Deficiência Intelectual/genética , Masculino , Anormalidades Musculoesqueléticas/genética , Fenótipo , Gravidez , Proteínas de Ligação a RNA/genética , Sequenciamento do Exoma
10.
J Vis Exp ; (181)2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35389978

RESUMO

Primary cilia (PC) are non-motile dynamic microtubule-based organelles that protrude from the surface of most mammalian cells. They emerge from the older centriole during the G1/G0 phase of the cell cycle, while they disassemble as the cells re-enter the cell cycle at the G2/M phase boundary. They function as signal hubs, by detecting and transducing extracellular signals crucial for many cell processes. Similar to most cell types, all neocortical neural stem and progenitor cells (NSPCs) have been shown harboring a PC allowing them to sense and transduce specific signals required for the normal cerebral cortical development. Here, we provide detailed protocols to generate and characterize two-dimensional (2D) and three-dimensional (3D) cell-based models from human induced pluripotent stem cells (hIPSCs) to further dissect the involvement of PC during neocortical development. In particular, we present protocols to study the PC biogenesis and function in 2D neural rosette-derived NSPCs including the transduction of the Sonic Hedgehog (SHH) pathway. To take advantage of the three-dimensional (3D) organization of cerebral organoids, we describe a simple method for 3D imaging of in toto immunostained cerebral organoids. After optical clearing, rapid acquisition of entire organoids allows detection of both centrosomes and PC on neocortical progenitors and neurons of the whole organoid. Finally, we detail the procedure for immunostaining and clearing of thick free-floating organoid sections preserving a significant degree of 3D spatial information and allowing for the high-resolution acquisition required for the detailed qualitative and quantitative analysis of PC biogenesis and function.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neocórtex , Animais , Diferenciação Celular/fisiologia , Cílios/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Mamíferos/metabolismo , Organoides/metabolismo
11.
Birth Defects Res ; 113(18): 1324-1332, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34491000

RESUMO

BACKGROUND: Neuronal ceroid lipofuscinoses (NCLs) form a clinically and genetically heterogeneous group of inherited neurodegenerative disorders that share common neuropathological features. Although they are the first cause of neurodegenerative disorders in children, their congenital forms are rarely documented. They are classically due to mutations in the CTSD gene (the CLN10 disease). Affected newborns usually present severe microcephaly, seizures and respiratory failure leading to death within the first postnatal days or weeks. CASES: We report on two siblings, in which exome sequencing identified a novel homozygous CTSD variant. The first sib presented at birth with seizures, rapidly progressive postnatal microcephaly and visual deficiency related to retinal dysfunction. Progressive neurological deterioration leads to death at the age of 24 months. Cathepsin D activity was reduced in the cultured fibroblasts of this patient. The second sib, a fetus of 36 weeks of gestation, was delivered after pregnancy termination for brain abnormalities (in accordance with French Legislation) suggesting a recurrence of the disease. Fetal postmortem examination disclosed neuropathological features consistent with NCL. CONCLUSIONS: Congenital NCL related to CTSD mutations is a neuronal storage disorder that produces in the developing brain diffuse neurodegeneration and white matter atrophy resulting in a progressive and rapidly lethal microcephaly.


Assuntos
Catepsina D , Microcefalia , Lipofuscinoses Ceroides Neuronais , Encéfalo/metabolismo , Catepsina D/genética , Feminino , Humanos , Recém-Nascido , Microcefalia/genética , Mutação/genética , Lipofuscinoses Ceroides Neuronais/genética , Gravidez
12.
Clin Genet ; 100(4): 462-467, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34212369

RESUMO

Hydrolethalus syndrome (HLS) is a rare lethal fetal malformation disorder related to ciliogenesis disruption. This condition is more frequent in Finland where a founder missense variant in the HYLS1 gene was identified. No other HYLS1 variant has hitherto been implicated in HLS. We report two unrelated French fetuses presenting with a phenotype of HLS with brain abnormalities, limbs malformations with pre and postaxial hexadactyly and abnormal genitalia. These two fetuses have compound heterozygous variants in HYLS1. The first allele carries the same Finnish missense variant (NM_145014.2: c.632A > G, p.[Asp211Gly]) in both fetuses and the second allele carries a new missense variant (c.662G > C, p.[Arg221Pro]) in the first fetus, and a new nonsense variant (c.613C > T, p.[Arg205*]) in the second fetus. This is the first report of HYLS1 mutated cases outside Finland. Both cases presented here are consistent with HLS with additional malformations, allowing expansion of the phenotypic presentation previously described.


Assuntos
Predisposição Genética para Doença , Variação Genética , Deformidades Congênitas da Mão/diagnóstico , Deformidades Congênitas da Mão/genética , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/genética , Hidrocefalia/diagnóstico , Hidrocefalia/genética , Fenótipo , Proteínas/genética , Alelos , Substituição de Aminoácidos , Autopsia , Hibridização Genômica Comparativa , Feminino , Feto , Estudos de Associação Genética , Genótipo , Humanos , Imuno-Histoquímica , Linhagem , Gravidez , Ultrassonografia Pré-Natal
15.
Clin Genet ; 98(3): 261-273, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32621347

RESUMO

Megacystis-microcolon-intestinal-hypoperistalsis syndrome (MMIHS) is a severe congenital visceral myopathy characterized by an abdominal distension due to a large non-obstructed urinary bladder, a microcolon and intestinal hypo- or aperistalsis. Most of the patients described to date carry a sporadic heterozygous variant in ACTG2. More recently, recessive forms have been reported and mutations in MYH11, LMOD1, MYLK and MYL9 have been described at the molecular level. In the present report, we describe five patients carrying a recurrent heterozygous variant in ACTG2. Exome sequencing performed in four families allowed us to identify the genetic cause in three. In two families, we identified variants in MMIHS causal genes, respectively a nonsense homozygous variant in MYH11 and a previously described homozygous deletion in MYL9. Finally, we identified compound heterozygous variants in a novel candidate gene, PDCL3, c.[143_144del];[380G>A], p.[(Tyr48Ter)];[(Cys127Tyr)]. After cDNA analysis, a complete absence of PDLC3 expression was observed in affected individuals, indicating that both mutated transcripts were unstable and prone to mediated mRNA decay. PDCL3 encodes a protein involved in the folding of actin, a key step in thin filament formation. Presumably, loss-of-function of this protein affects the contractility of smooth muscle tissues, making PDCL3 an excellent candidate gene for autosomal recessive forms of MMIHS.


Assuntos
Anormalidades Múltiplas/genética , Proteínas de Transporte/genética , Colo/anormalidades , Predisposição Genética para Doença , Pseudo-Obstrução Intestinal/genética , Proteínas do Tecido Nervoso/genética , Bexiga Urinária/anormalidades , Anormalidades Múltiplas/patologia , Feto Abortado , Actinas/genética , Colo/patologia , Feminino , Homozigoto , Humanos , Recém-Nascido , Pseudo-Obstrução Intestinal/patologia , Masculino , Mutação/genética , Cadeias Pesadas de Miosina/genética , Cadeias Leves de Miosina/genética , Linhagem , Bexiga Urinária/patologia , Sequenciamento do Exoma
16.
Am J Med Genet A ; 182(5): 1236-1242, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32052936

RESUMO

Cerebro-oculo-facio-skeletal syndrome (COFS) is a rare autosomal recessive neurodegenerative disease belonging to the family of DNA repair disorders, characterized by microcephaly, congenital cataracts, facial dysmorphism and arthrogryposis. Here, we describe the detailed morphological and microscopic phenotype of three fetuses from two families harboring ERCC5/XPG likely pathogenic variants, and review the five previously reported fetal cases. In addition to the classical features of COFS, the fetuses display thymus hyperplasia, splenomegaly and increased hematopoiesis. Microencephaly is present in the three fetuses with delayed development of the gyri, but normal microscopic anatomy at the supratentorial level. Microscopic anomalies reminiscent of pontocerebellar hypoplasia are present at the infratentorial level. In conclusion, COFS syndrome should be considered in fetuses when intrauterine growth retardation is associated with microcephaly, arthrogryposis and ocular anomalies. Further studies are needed to better understand XPG functions during human development.


Assuntos
Síndrome de Cockayne/genética , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Doenças Neurodegenerativas/genética , Proteínas Nucleares/genética , Diagnóstico Pré-Natal , Fatores de Transcrição/genética , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Catarata/diagnóstico , Catarata/patologia , Síndrome de Cockayne/diagnóstico , Síndrome de Cockayne/epidemiologia , Síndrome de Cockayne/patologia , Feminino , Feto/patologia , Humanos , Masculino , Microcefalia/diagnóstico , Microcefalia/genética , Microcefalia/patologia , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/epidemiologia , Doenças Neurodegenerativas/patologia , Gravidez
17.
Biol Cell ; 111(9): 217-231, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31177551

RESUMO

Ciliopathies are complex genetic multi-system disorders causally related to abnormal assembly or function of motile or non-motile cilia. While most human cells possess a non-motile sensory/primary cilium (PC) during development and/or in adult tissues, motile cilia are restricted to specialised cells. As a result, PC-associated ciliopathies are characterised by high phenotypic variability with extensive clinical and genetic overlaps. In the present review, we have focused on cerebral developmental anomalies, which are commonly found in PC-associated ciliopathies and which have mostly been linked to Hedgehog signalling defects. In addition, we have reviewed emerging evidence that PC dysfunctions could be directly or indirectly involved in the mechanisms underlying malformations of cerebral cortical development including primary microcephaly.


Assuntos
Agenesia do Corpo Caloso/embriologia , Cerebelo/anormalidades , Cílios/patologia , Ciliopatias/embriologia , Hidrocefalia/embriologia , Malformações do Sistema Nervoso/embriologia , Defeitos do Tubo Neural/embriologia , Animais , Cerebelo/embriologia , Deficiências do Desenvolvimento , Proteínas Hedgehog/metabolismo , Humanos , Camundongos , Transdução de Sinais
18.
Brain Sci ; 8(8)2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-30087272

RESUMO

The TUBA1A gene encodes tubulin alpha-1A, a protein that is highly expressed in the fetal brain. Alpha- and beta-tubulin subunits form dimers, which then co-assemble into microtubule polymers: dynamic, scaffold-like structures that perform key functions during neurogenesis, neuronal migration, and cortical organisation. Mutations in TUBA1A have been reported to cause a range of brain malformations. We describe four unrelated patients with the same de novo missense mutation in TUBA1A, c.5G>A, p.(Arg2His), as found by next generation sequencing. Detailed comparison revealed similar brain phenotypes with mild variability. Shared features included developmental delay, microcephaly, hypoplasia of the cerebellar vermis, dysplasia or thinning of the corpus callosum, small pons, and dysmorphic basal ganglia. Two of the patients had bilateral perisylvian polymicrogyria. We examined the effects of the p.(Arg2His) mutation by computer-based protein structure modelling and heterologous expression in HEK-293 cells. The results suggest the mutation subtly impairs microtubule function, potentially by affecting inter-dimer interaction. Based on its sequence context, c.5G>A is likely to be a common recurrent mutation. We propose that the subtle functional effects of p.(Arg2His) may allow for other factors (such as genetic background or environmental conditions) to influence phenotypic outcome, thus explaining the mild variability in clinical manifestations.

19.
Eur J Med Genet ; 61(10): 585-595, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29605658

RESUMO

Mutations in CPLANE1 (previously known as C5orf42) cause Oral-Facial-Digital Syndrome type VI (OFD6) as well as milder Joubert syndrome (JS) phenotypes. Seven new cases from five unrelated families diagnosed with pure OFD6 were systematically examined. Based on the clinical manifestations of these patients and those described in the literature, we revised the diagnostic features of OFD6 and include the seven most common characteristics: 1) molar tooth sign, 2) tongue hamartoma and/or lobulated tongue, 3) additional frenula, 4) mesoaxial polydactyly of hands, 5) preaxial polydactyly of feet, 6) syndactyly and/or bifid toe, and 7) hypothalamic hamartoma. By whole or targeted exome sequencing, we identified seven novel germline recessive mutations in CPLANE1, including missense, nonsense, frameshift and canonical splice site variants, all causing OFD6 in these patients. Since CPLANE1 is also mutated in JS patients, we examined whether a genotype-phenotype correlation could be established. We gathered and compared 46 biallelic CPLANE1 mutations reported in 32 JS and 26 OFD6 patients. Since no clear correlation between paired genotypes and clinical outcomes could be determined, we concluded that patient's genetic background and gene modifiers may modify the penetrance and expressivity of CPLANE1 causal alleles. To conclude, our study provides a comprehensive view of the phenotypic range, the genetic basis and genotype-phenotype association in OFD6 and JS. The updated phenotype scoring system together with the identification of new CPLANE1 mutations will help clinicians and geneticists reach a more accurate diagnosis for JS-related disorders.


Assuntos
Anormalidades Múltiplas/genética , Cerebelo/anormalidades , Anormalidades do Olho/genética , Mutação em Linhagem Germinativa , Doenças Renais Císticas/genética , Proteínas de Membrana/genética , Síndromes Orofaciodigitais/genética , Retina/anormalidades , Anormalidades Múltiplas/diagnóstico , Adolescente , Adulto , Criança , Pré-Escolar , Anormalidades do Olho/diagnóstico , Feminino , Humanos , Lactente , Recém-Nascido , Doenças Renais Císticas/diagnóstico , Masculino , Pessoa de Meia-Idade , Síndromes Orofaciodigitais/diagnóstico , Penetrância
20.
Am J Med Genet A ; 176(7): 1610-1613, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29704304

RESUMO

Ciliopathies comprise a group of clinically heterogeneous and overlapping disorders with a wide spectrum of phenotypes ranging from prenatal lethality to adult-onset disorders. Pathogenic variants in more than 100 ciliary protein-encoding genes have been described, most notably those involved in intraflagellar transport (IFT) which comprises two protein complexes, responsible for retrograde (IFT-A) and anterograde transport (IFT-B). Here we describe a fetus with an unclassified severe ciliopathy phenotype including short ribs, polydactyly, bilateral renal agenesis, and imperforate anus, with compound heterozygosity for c.118_125del, p.(Thr40Glyfs*11) and a c.352 +1G > T in IFT27, which encodes a small GTPase component of the IFT-B complex. We conclude that bilateral renal agenesis is a rare feature of this severe ciliopathy and this report highlights the phenotypic overlap of Pallister-Hall syndrome and ciliopathies. The phenotype in patients with IFT27 gene variants is wide ranging from Bardet-Biedl syndrome to a lethal phenotype.


Assuntos
Ciliopatias/patologia , Anormalidades Congênitas/patologia , Doenças Fetais/patologia , Nefropatias/congênito , Rim/anormalidades , Mutação , Proteínas rab de Ligação ao GTP/genética , Ciliopatias/genética , Anormalidades Congênitas/genética , Evolução Fatal , Feminino , Doenças Fetais/genética , Humanos , Rim/patologia , Nefropatias/genética , Nefropatias/patologia , Masculino , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...